Higher-Derivative Supergravity and Applications to String Cosmology

David Ciupke

DESY, Hamburg

Based on [1605.00651] and (DC, Louis, Westphal [1505.03092])

String Pheno 2016

Introduction

Our Playground:
$$(\mathcal{N} = 1, D = 4)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Scalar Potential in $(\mathcal{N} = 1, D = 4)$

Global:
$$V_F = F^2 + V_{\rm HD}$$

▶ F^2 from K, W

 \blacktriangleright V_{HD} via SUSY from HD

For SUGRA EFT:
$$V_{M_p} < V_{\text{HD}}$$

Literature on SUSY HD:

[Cecotti et al '87, Buchbinder et al '94, Baumann et al '11, Khoury et al '11, Koehn et al '12, Farakos et al '12]

Here: General attempt on HD and $V_{\rm HD}$

Higher-Derivative Operators in Rigid $\mathcal{N}=1$ [Buchbinder, Kuzenko '94], [DC, '16]

First: Consider rigid $\mathcal{N} = 1$

- Chiral superfield $\Phi = (A, \chi, F)$
- General V for chiral superfield Φ :

'Kähler potential' $K(\Phi, \overline{\Phi}, D^2 \Phi, \overline{D}^2 \overline{\Phi})$ and $W(\Phi)$

- Anti-chiral HD Multiplet $D^2 \Phi = (F, \partial \chi, \Box A)$
- ▶ Geometrically: V lives on cotangent-bundle

Higher-Derivative Supergravity [DC, '16]

Setup: $\mathcal{N} = 1$ old minimal $(g_{\mu\nu}, \psi_{\mu}, M, b_a)$ + chiral matter

- ▶ $V_{\rm HD}$ much more involved ! Form only conjectured
- Instead classification of leading + next-to-leading order operators
- Toolkit for computation of component action (extending [Baumann, Green '11])

▶ $\mathcal{O}(\mathcal{D}^4)$ operators: $28 \to (3+6)$, component actions computed

Application 1: Supersymmetric Vacua

- ▶ M₄-vacua: No effect from V_{HD} (also in [Cecotti et al '87])
- ► AdS₄-vacua: V_{HD} matters, e.g. moduli spaces expected to be absent (fits also with 3D SCFTs [Cordova et al '16])

 $(\exists \text{ also } AdS_3 \times \mathbb{R}, \mathbb{R} \times S^3 \text{ and } pp\text{-wave backgrounds for } \langle b_a \rangle \neq 0$ $\rightarrow \text{ only in pure HD Sugra [Kuzenko '16]}$

Application 2: Shift-symmetric No-Scale Models

Only F-term corrections at leading order \rightarrow Relevant for String Compactifications

Application 3: α' -corrections

- ▶ α' -, g_s -corrections encode truly stringy information
- ▶ E.g. Bulk Type IIB $(\alpha')^3$ -corrections

$$S_{(\alpha')^3} \supset \int \mathrm{d}^{10} x \, eR^4$$

- Consider IIB/CY w. O-planes and flux $\rightarrow T_i$ flat directions
 - $\rightarrow \alpha'\text{-corrections}$ relevant for stabilization
- ► E.g. [Becker et al '01]: R⁴ sources correction to 4D K (α'-terms in F-theory in Raffaele's talk tomorrow)

Matching of 4D ∂^4 -terms from R^4 now \checkmark

Higher-derivative Operators: Incomplete Matching [DC, Louis, Westphal '15]

 \blacktriangleright Idea: Match simple operator which corrects V

$$\mathcal{A} \, \mathcal{D} T \mathcal{D} T \bar{\mathcal{D}} \bar{T} \bar{\mathcal{D}} \bar{T} \supset \mathcal{A} \, |\partial T|^4 - \mathcal{A} \, |F_T|^4$$

▶ Strategy: $|\partial T|^4$ from R^4 -terms and match

• Result:
$$\mathcal{A} \sim \int c_2 \wedge J$$

$$V_{F^4} = \underbrace{\lambda}_{?} |W_0|^4 \frac{\Pi_i t^i}{\mathcal{V}^4}$$

$$\blacktriangleright \ \Pi_i = \int c_2 \wedge \hat{D}_i$$

► Flux-compactifications so far: $(k_{ijk}, h_{1,1}, h_{1,2}, \text{fluxes})$ ⇒ Information of c_2 new!

Perturbative Moduli Stabilization [DC, Louis, Westphal '15]

Taking just BBHL and F^4 -term:

If $\lambda < 0$ then for any CY3 with $\chi > 0$ the potential has a non-susy AdS minimum, fixing all τ_i

- Fully perturbative! Minimum depends only on topological information of CY
- Trustworthy?

Need to know λ !

ig. 1: $h_{11} + h_{12}$ vs. Euler number $\chi = 2(h_{11} - h_{12})$ for all pairs (h_{11}, h_{12}) with $h_{11} \le h_{12}$

 F^4 Stabilization for LVS [Cicoli, DC, de Alwis, Muia, to appear]

► Swiss-Cheese geometry:

$$\mathcal{V} = \mathcal{F}(\tau_1, \dots, \tau_{N_L}) - \tau_s^{3/2}$$

► LVS: $(\alpha')^3 F^2 \oplus W_{np}$ stabilize \mathcal{V} and τ_s

▶ $N_L - 1$ flat directions

If $\lambda < 0$ then F^4 term stabilizes all $N_L - 1$ flat directions

- ▶ Volume stabilization unaffected by F^4 term
- ▶ Tune in for Michele's talk tomorrow!

Conclusions

- \blacktriangleright HD relevant for (string-) cosmology, here: V
- ▶ New $(\alpha')^3$ -corrections! → Relevant for moduli stabilization
- Useful for inflationary model building [Broy, DC, Pedro, Westphal '15]

Future Directions:

- ► KK-reduce $(\alpha')^3 R^4$ -terms and solve system relating the ∂^4 -terms to general HD supergravity (6 operators)
- Methods useful also for localized sources (Talk of Sjoerd on Monday)

Thanks for your attention!