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@ M Theory, through its 11d low-energy limit, accounts for a new and
exciting corner of String Phenomenology.
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@ M Theory, through its 11d low-energy limit, accounts for a new and
exciting corner of String Phenomenology.

@ When compatified on a Gy-holonomy manifold, we retrieve all the
required ingredients for model building: Gauge interactions,
charged chiral matter, spontaneously broken A" =1 SUSY, etc
(Acharya, Gukov hep-th/0409191; Acharya, Bobkov, Kane, Kumar,
Vaman hep-th/0606262)
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@ M Theory, through its 11d low-energy limit, accounts for a new and
exciting corner of String Phenomenology.

@ When compatified on a Gy-holonomy manifold, we retrieve all the
required ingredients for model building: Gauge interactions,
charged chiral matter, spontaneously broken A" =1 SUSY, etc
(Acharya, Gukov hep-th/0409191; Acharya, Bobkov, Kane, Kumar,
Vaman hep-th/0606262)

e Further, as moduli are stabilised (in the absence of fluxes), all (GUT
scale) mass parameters can estimated, and reasonable SUGRA

approximations employed (Acharya, Bobkov, Kane, Shao, Kumar
hep-ph/0801.0478)
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@ The G2-MSSM (Acharya, Kane, Kuflik, Lu hep-ph/1102.0556) — an
SU(5) SUSY GUT - was presented following a proposal by Witten
(hep-ph/0201018) that provided us with a natural Z, discrete
symmetry.
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@ The G2-MSSM (Acharya, Kane, Kuflik, Lu hep-ph/1102.0556) — an
SU(5) SUSY GUT - was presented following a proposal by Witten
(hep-ph/0201018) that provided us with a natural Z, discrete
symmetry.

o If the internal space is not simply-connected (it has holes or
handles), there are non-trivial quantities called Wilson lines

W:Pexp}{Ayél,

that break the GUT group and (under certain geometric
assumptions) whose diagonal entries act as discrete charges.
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@ The G2-MSSM (Acharya, Kane, Kuflik, Lu hep-ph/1102.0556) — an
SU(5) SUSY GUT - was presented following a proposal by Witten
(hep-ph/0201018) that provided us with a natural Z, discrete
symmetry.

o If the internal space is not simply-connected (it has holes or
handles), there are non-trivial quantities called Wilson lines

W:Pexp}{Ayél,

that break the GUT group and (under certain geometric
assumptions) whose diagonal entries act as discrete charges.

@ This provides a solution for the Doublet-Triplet problem
W = diag(n’, 7%, 7%, 07, n), n" =1, 35 +2vy =0 mod n:

gH =D& Hy — 7/55@77de
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@ The G2-MSSM (Acharya, Kane, Kuflik, Lu hep-ph/1102.0556) — an
SU(5) SUSY GUT - was presented following a proposal by Witten
(hep-ph/0201018) that provided us with a natural Z, discrete
symmetry.

o If the internal space is not simply-connected (it has holes or
handles), there are non-trivial quantities called Wilson lines

W:Pexp}{Ayél,

that break the GUT group and (under certain geometric
assumptions) whose diagonal entries act as discrete charges.
@ This providgs a solution for the Doublet-Triplet problem
W = diag(n’, 7%, 7%, 07, n), n" =1, 35 +2vy =0 mod n:
gH = 5@ Hy — 7/55@ T]’YHd
@ Generic O(103 GeV) u-parameters are generated by moduli vevs

sym
K:)iHqu—l—h.C.—>Mg<>73/2

~ O(10% GeV),
mpj mpj
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@ Recently (Acharya, Bozek, MCR, King, Pongkitivanichkul
1502.01727) we proposed an SO(10) model from M Theory on
Go-manifolds. Unfortunately, the same Doublet-Triplet problem
solution does not work

10 —» o (n_o‘Hd ® 77*“35 en*H, ® 77_°‘9D) .
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= Novel doublet-triplet problem solution: allow for light D, D while
decoupled from matter using the Wilson line phases.
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@ Recently (Acharya, Bozek, MCR, King, Pongkitivanichkul
1502.01727) we proposed an SO(10) model from M Theory on
Go-manifolds. Unfortunately, the same Doublet-Triplet problem
solution does not work

10 —» o (n_o‘Hd D 77“35 e n*H, @ 777“8D) .

= Novel doublet-triplet problem solution: allow for light D, D while
decoupled from matter using the Wilson line phases.

@ Unification is assured by considering the addition of a split
vector-like family

165 — 77X (77—3'yL D ,,73'y+6ec ® n?ry—ziN @ 77—7—6uc ® @n—v—l-tsdc ® nny)

Tﬁx%nyrﬁx
dexdg :x—y+8+x=0 mod n,
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@ Recently (Acharya, Bozek, MCR, King, Pongkitivanichkul
1502.01727) we proposed an SO(10) model from M Theory on
Go-manifolds. Unfortunately, the same Doublet-Triplet problem
solution does not work

10 = 1° (n—aHd ®n°D & 1*H, @ n*ﬂD) .

= Novel doublet-triplet problem solution: allow for light D, D while
decoupled from matter using the Wilson line phases.

@ Unification is assured by considering the addition of a split
vector-like family

165 — 77X (77—3'yL D ,,73'y+5ec ® 7737—5/\/ @ 77—7—6uc ® @n—v—l-tsdc ® nny)

Tﬁx%nyrﬁx
dexdg :x—y+8+x=0 mod n,

@ This vector-like family alsoprovides a Higgs to break the rank
through Nx, Nx vevs.
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@ Susy theories normally provide scalar potentials with positive
quadratic masses. RSB is an option, but difficult to achieve at an
arbitrary mass-scale.
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@ Susy theories normally provide scalar potentials with positive
quadratic masses. RSB is an option, but difficult to achieve at an
arbitrary mass-scale.

@ Under the assumption that compactification preserves
S50(10)-preserving Yukawas

Yo > yr = mp, ~ O(100 GeV)
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@ Susy theories normally provide scalar potentials with positive
quadratic masses. RSB is an option, but difficult to achieve at an
arbitrary mass-scale.

@ Under the assumption that compactification preserves
S50(10)-preserving Yukawas

Yo > yr = mp, ~ O(100 GeV)
= Seesaw mechanism, which requires a RHv (N € 16) Majorana mass
My NN

such that )
mphy v = —M.
El MN
And in unified Yukawa scenario

My > 10 GeV
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@ Susy theories normally provide scalar potentials with positive
quadratic masses. RSB is an option, but difficult to achieve at an
arbitrary mass-scale.

@ Under the assumption that compactification preserves
S50(10)-preserving Yukawas

Yo > yr = mp, ~ O(100 GeV)
= Seesaw mechanism, which requires a RHv (N € 16) Majorana mass
My NN

such that )
~ mD,l/
Mppy v = _Mil\/
And in unified Yukawa scenario
My > 10™ GeV
@ If this mass is to be generated by the symmetry breaking, we need a
high-scale breaking mechanism.

M. Crispim Rom3o (Southampton) Symmetry breaking and v masses String Pheno 2016 5/17



Outline

© Extra U(1) Symmetry Breaking
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@ The Kolda-Martin mechanism (hep-ph/9503445) provides an elegant
way of obtaining large vevs along a D-Flat direction.
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@ The Kolda-Martin mechanism (hep-ph/9503445) provides an elegant
way of obtaining large vevs along a D-Flat direction.

@ Consider the presence of a vector-like pair with a non-renormalisable

term o
XX
W %)
mpy

one can minimise the scalar potential, obtaining

(X) =~ \/xmp,

so for example

i~ 0(10* GeV) = (X) =~ O(10' GeV)
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@ The Kolda-Martin mechanism (hep-ph/9503445) provides an elegant
way of obtaining large vevs along a D-Flat direction.

@ Consider the presence of a vector-like pair with a non-renormalisable

term o
XX
W %)
mpy

one can minimise the scalar potential, obtaining

(X) =~ \/xmp,
so for example
i~ 0(10* GeV) = (X) =~ O(10' GeV)

@ More generally

1

WS —s (NxNx)"™ (NNx)“, n>2, k<n
Mmpy

can lift (X) even more for larger n.
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@ There are minima for different values of (n, k), including a RHv

Majorana mass term
22 (NNY(Nx Nx)
mp;
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@ There are minima for different values of (n, k), including a RHv
Majorana mass term
22 (NN)(NxNx)
mpj
e For (n,k) =(2,0),(3,0),(4,0) one can find Kolda-Martin mechanism

implementations with vacua at

Case (n, k) ‘ (Nx) ‘ (N)
(2,0) O(10*2 GeV) | O(10'? GeV)
(3,0) O(10'* GeV) | O(10° GeV)
(4,0) O(10%% GeV) | O(10° GeV)

where the estimates depend on parameters of the model. Here we
took values expected from M Theory on G, manifolds.
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@ There are minima for different values of (n, k), including a RHv
Majorana mass term
22 (NN)(NxNx)
mpj
e For (n,k) =(2,0),(3,0),(4,0) one can find Kolda-Martin mechanism

implementations with vacua at

Case (n, k) ‘ (Nx) ‘ (N)
(2,0) O(10*2 GeV) | O(10'? GeV)
(3,0) O(10'* GeV) | O(10° GeV)
(4,0) O(10%% GeV) | O(10° GeV)

where the estimates depend on parameters of the model. Here we
took values expected from M Theory on G, manifolds.

@ The minima above are obtained while keeping F and D flatness =
These vevs do not generate extra SUSY breaking.

M. Crispim Rom3o (Southampton) Symmetry breaking and v masses String Pheno 2016 7/17



@ There are minima for different values of (n, k), including a RHv
Majorana mass term
22 (NN)(NxNx)
mpj
e For (n,k) =(2,0),(3,0),(4,0) one can find Kolda-Martin mechanism

implementations with vacua at

Case (n, k) ‘ (Nx) ‘ (N)

(2,0) O(10*2 GeV) | O(10'? GeV)
(3,0) O(10'* GeV) | O(10° GeV)
(4,0) O(10%% GeV) | O(10° GeV)

where the estimates depend on parameters of the model. Here we
took values expected from M Theory on G, manifolds.

@ The minima above are obtained while keeping F and D flatness =
These vevs do not generate extra SUSY breaking.

@ The high-scale nature of these vevs will impact the neutrino masses
physics. Namely, the presence of matter vevs indicate the
emergence of RPV terms.
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© Neutrino masses
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@ We consider some couplings to be allowed by the discrete symmetry,
namely
Wtree ) yI/NLHu
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@ We consider some couplings to be allowed by the discrete symmetry,
namely
Wtree ) yI/NLHu

@ and some of the following non-renormalisable terms

C — Ch — \n—k ~— \k
Wnon.ren. D 22 (NN)(NXNX) + 2,;53 (NXNX) (NNX)
mpy Mmp,

1 _ o _ o
+ mi (blHdHuLLX 4+ boLLLxLx + bsHyH, LxLx + balLxLxLx
Pl

+ b5LXLXZXZX + b@HdHuNNX + b7LZX/VNX + bgLszNNX
+ boHgHuNx Nx + bioLLx NxNx + by1LxLx NxNx)
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@ We consider some couplings to be allowed by the discrete symmetry,
namely
Wtree ) yI/NLHu

@ and some of the following non-renormalisable terms

€22
W )

(NN) (NxNx) + —k - (Nxx)"™* (NNix)*
P Mpy

1 _ o _ o
+ mi (blHdHuLLX 4+ boLLLxLx + bsHyH, LxLx + balLxLxLx
Pl

+ b5LXLXZXZX + bGHdHuNNX + b7LZX/VNX + bgLszNNX
+ boHgHuNx Nx + bioLLx NxNx + by1LxLx NxNx)

@ of these, we are specially interested in allowing

b
ALXLXNXNX
mp

while disallowing b6, b7, bg, blO-
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@ Disallowed terms can arise from Kahler potential as the moduli
stabilise

K> iZ)(Lx + iZXL + iN)(Nx + iNX/V + iPqu
mp mp; mp mp mpj

+ Ny LxHy + —g NLHy, + —p Ny LHy, + — NLxHy + 5 Nx Lx Hg
mp, mp, mp, mp, M5,
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@ Disallowed terms can arise from Kahler potential as the moduli
stabilise

K> iZ)(Lx + iZXL + iN)(Nx + iN)(/V + iPqu
mpy mpy mpy mpy mpy
+ Ny LxHy + —g NLHy, + —p Ny LHy, + — NLxHy + 5 Nx Lx Hg
Mpy Mpy Mpy Mpy Mg,
@ We obtain effective superpotential terms
Wesr D/L)LO(Z)(LX + M)L(mZXL -+ ,U«)I\éXN)(NX + M%mﬁxlv + uHyHy
+ /\WHdZXNX + A HULN + A px Hy LN
+ AxmHyLx N + AxxHyLx Nx
where
s
~mg— ~ O(10%) GeV
H 3/2 mp; (10%)

S
A\~ =~ 0107
ms m;2>/ ( )
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@ Disallowed terms can arise from Kahler potential as the moduli
stabilise

K> iZ)(Lx + iZXL + iN)(Nx + iN)(/V + iPqu
mpy mpy mpy mpy mpy
+ Ny LxHy + —g NLHy, + —p Ny LHy, + — NLxHy + 5 Nx Lx Hg
Mpy Mpy Mpy Mpy Mg,
@ We obtain effective superpotential terms
Wt D/L)LO(Z)(LX + M)L(mZXL + ,U«)I\éXN)(NX + M%mﬁxlv + uHyHy

+ /\WHdZXNX + A HULN + A px Hy LNx
+ AxmHyLx N + AxxHyLx Nx

where

@ gmwmipl ~ O(10%) GeV

s
A mgp—s o o107
Mpy
@ The low-energy effective theory has the total superpotenial
Wtotal > Wtree + Wnon.ren, =+ Weff
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o Matter N vev = emergence of B-RPV

where

M. Crispim Rom3o (Southampton)

kEmHy L+ kxHyLx + findZX

Km = (}’V + )‘V)<N> + >‘mX<NX>
KX =~ )\Xm<N> + >\XX<NX>

rx = Ay (Nx)

Symmetry breaking and v masses
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o Matter N vev = emergence of B-RPV

EmHuLl + kxHyLx + findZX
where

Km = (Yo + A )(N) + Amx (Nx)

kx >~ Axm(N) + Axx (Nx)

rx = Ay (Nx)

@ All of these k-parameters need to be < Higgses/Higgsinos masses,
and play an important role in neutrino masses (Hirsch, Diaz, Porod,
Romao, Valle 0004115)
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o Matter N vev = emergence of B-RPV

EmHuLl + kxHyLx + /{YHdZX
where

Km = (Yo + A )(N) + Amx (Nx)

kx >~ Axm(N) + Axx (Nx)

rx = Ay (Nx)

@ All of these k-parameters need to be < Higgses/Higgsinos masses,
and play an important role in neutrino masses (Hirsch, Diaz, Porod,
Romao, Valle 0004115)

@ B-RPV can mediate LSP decay

2 4 /100 GeV\°
~ (3.9 x 1015 K ( Mo )
risp =2 (3.9 )<gwydf€m) 10 TeV mLsp €

which in order to be stable requires r,, < 1071* GeV
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@ From kinetic terms we have matter-gaugino mixing. Both the v-type
fermions B . B
g'Bwivi, gW'wvi, g"Bx(vivi

vi ={v,vx,Ux}

M. Crispim Rom3o (Southampton) Symmetry breaking and v masses String Pheno 2016 11 /17



@ From kinetic terms we have matter-gaugino mixing. Both the v-type

fermions _ N ~
g'Biyvi, gW(mjvi, g&"Bx(vi)vi

vi ={v,vx,Vx}
@ And the N-type, with the extra U(1) gaugino

g”éx<N,'>N,'

N; = {N,Nx,Nx}, g’ = \/ggl. g" = 558x
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@ From kinetic terms we have matter-gaugino mixing. Both the v-type

fermions _ N ~
g'Biyvi, gW(mjvi, g&"Bx(vi)vi

vi ={v,vx,Vx}
@ And the N-type, with the extra U(1) gaugino

g”éx<N,'>N,'

N; = {N, /VX7NX}, g = \/ggy g = ﬁgx

o In the basis (B, WO, Bx, H%, HO, v, ux, 7x, N, Nx, Nx), the total
mass matrix is then

5x5 5x6
M, = N,!,Xoe T Méﬁﬁ
(M3Z°) My~
Mi§5: Gaugino-Higgsinos masses and mixing.

M3%6: Gaugino and Higgsino mixings with v-type and N-type states.
M©®*6: 1-type and N-type masses and mixings.
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@ Despite its intricate form, it's possible to find some hierarchies inside
M

X~V
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@ Despite its intricate form, it's possible to find some hierarchies inside
M, _,

e At the U(1) bNraking scale, a linear combination of N, Nx, Nx will
pair up with Bx (massless vector superfield + chiral superfield =
massive vector superfield)
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@ Despite its intricate form, it's possible to find some hierarchies inside
M, _,

e At the U(1) braking scale, a linear combination of N, N, Nx will
pair up with éx (massless vector superfield + chiral superfield =
massive vector superfield)

@ In the v, vx,Ux sub-basis, the v-type masses read

0 0 b7<NX><N>+b10<NX><NX> +,UL

mp) mpy Xm
bg(Nx)(N) | bua(Nx)(Nx) L
0 mp T 0 mp + Bx
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@ Despite its intricate form, it's possible to find some hierarchies inside
M, _,

e At the U(1) braking scale, a linear combination of N, N, Nx will
pair up with I§X (massless vector superfield + chiral superfield =
massive vector superfield)

@ In the v, vx,Ux sub-basis, the v-type masses read

0 0 b7<NX><N>+b10<NX><NX> +,UL

mp) mpy Xm
bg(Nx)(N) | bua(Nx)(Nx) L
0 mp T 0 mp + Bx

@ Unless we enhance the Dirac mass involving vx, Ux, there is maximal
mixing between v, vx
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@ Despite its intricate form, it's possible to find some hierarchies inside
M, _,

e At the U(1) braking scale, a linear combination of N, N, Nx will
pair up with I§X (massless vector superfield + chiral superfield =
massive vector superfield)

@ In the v, vx,Ux sub-basis, the v-type masses read

0 0 b7<NX><N>+b10<NX><NX> +,UL

mp) mpy Xm
bg(Nx)(N) | bua(Nx)(Nx) L
0 mp T 0 mp + Bx

@ Unless we enhance the Dirac mass involving vx, Ux, there is maximal
mixing between v, vx
= This can be accomplish by letting the discrete symmetry to allow

(Nx)(Nx)
mpy

b11

while forbidding b7, b1p.
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@ Ultimately, due to the extended nature of the neutral-fermion sector
it’s very difficult to completely assess the relations and leading
mechanisms defining physical neutrino masses
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@ Ultimately, due to the extended nature of the neutral-fermion sector
it’s very difficult to completely assess the relations and leading
mechanisms defining physical neutrino masses

@ We perform a scan to find some correlations leading to good physical
neutrinos:
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@ We perform a scan to find some correlations leading to good physical
neutrinos:

°
Miightest € [50,100] meV,
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@ Ultimately, due to the extended nature of the neutral-fermion sector
it’s very difficult to completely assess the relations and leading
mechanisms defining physical neutrino masses

@ We perform a scan to find some correlations leading to good physical
neutrinos:

°
Miightest € [50,100] meV,

|Vlight> = Oé‘l/> 4+ ...

where « is the biggest coefficient.
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@ Ultimately, due to the extended nature of the neutral-fermion sector
it’s very difficult to completely assess the relations and leading
mechanisms defining physical neutrino masses

@ We perform a scan to find some correlations leading to good physical
neutrinos:

°
Miightest € [50,100] meV,

|Vlight> = Oé‘l/> 4+ ...

where « is the biggest coefficient.

mgnd/ightest > 100 GeV
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First we look into by coupling effects on the lightest state composition

0 0
-2t
—4F
3§ -6f g
° = .
g -8 e .
|} - .
_107: S
-12f RS | o
o e ° . v Sfepe, LI .t * ‘.
I AP N : A LA :
075 0.80 085 090 095 1.00 075 080 085 090 095 1.00
a a
(a) (2,0) (b) (3,0)

We find by; ~ O(1) — i.e. non-suppressed — returns desired physical
neutrino states o ~ 1.

M. Crispim Rom3o (Southampton) Symmetry breaking and v masses String Pheno 2016

14 / 17



Furthermore, for by; ~ 1, the B-RPV coupling is bound

km <1 GeV

05 — T .‘ T T m 15

1.0

0.5f

Logokm/GeV

00Ffeea e

Logokm/GeV

|
o
2]

—20f : RINRS k
. . . -1.0
—25f . ]

075 0.80 0.85 090 095 1.00
a

075 0.80 085 090 0.95 1.00
a

(c) (2,0) (d) (3,0)

This not only ensures us good Higgs physics, but is also in agreement with
customary lore on B-RPV bounds from neutrino masses.
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Outline

@ Conclusions
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@ Further developed the SO(10) class of models from M Theory by
solving two problems: how to break the rank of the group and
guarantee physically sound neutrinos
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@ Further developed the SO(10) class of models from M Theory by
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@ Further developed the SO(10) class of models from M Theory by
solving two problems: how to break the rank of the group and
guarantee physically sound neutrinos

@ Successfully implemented Kolda-Martin mechanism (and variations)
to break the rank of the gauge group

@ Breaking mechanism scenario is intrinsically connected to neutrino
masses through non-renormalisable terms and B-RPV terms

@ Physical neutrinos with realistic masses are obtained

@ In the regions of the parameter space that return good physical
neutrinos, B-RPV is naturally suppressed in agreement with the usual
lore km < 1 GeV
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Thank you!
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Backup slides

@ The compactified G, manifold, K, is crucial for defining the 4D
theory:

o Gauge fields supported on 3-spaces with orbifold singularities.

o Additional conical singularities on the 3-spaces = localised chiral
superfields in gauge irreps.

e G, manifolds do not have continuous symmetries but admit discrete
symmetries.

@ In fluxless compactifications axions have an exact Peccei-Quinn
symmetry = no perturbative moduli superpotential.

@ Tree-level superpotential coefficients are functions of volumes in K
ik dyi dyi k- Y ilk
W D A7 D' DD : AV ~ exp(—voljik).

e . . L. 7/3
@ Unification coupling is given by the volume of K, aU/ ~1/Vq.
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@ In M Theory, moduli are stabilised and SUSY is broken by a confining
hidden sector (hep-th/0701034).

@ The hidden sector allows for a two chiral supermultiplets that
originate a condensate,¢, charged under two gauge groups
SU(P) x SU(Q).

@ Due to axionic PQ symmetry, the hidden sector superpotential is
non-perturbative

Whidd — C1¢72/Pe7 S Njsi2n/P + e ST Njsi2w/Q

¢; are complex numbers with order 1 magnitude, N; are determined
by the homologies of the hidden 3-cycles.

@ The above construction formally fixes all moduli and, since
-2 _K/2m?
mz;p = Mmp, € / W,

hierarchy for the visible sector.
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@ Numerical studies with reasonable, expectable, values for parameters

return
m3 > ~ O(10 — 100 TeV)

K/m3 = R /m2+ Kap(s)®7 07 + (Z2(5)ag®0” + hec.) + O(6%)
W = Whig + Y5, 00 &7

where ® are visible chiral superfields, Y’

@ The un-normalised Yukawas, Y’ gy are glven by non-perturbative
effects from membrane instantons action on the 3-dimensional
subspace where the superfields @, &8, &7 are supported. More
explicitly, the trilinear couplings take the form

Yéﬁ'y = Caﬁ'yei27T 5577 Gisi+ai)
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The soft-terms are all obtained by the usual SUGRA formulae (9707209)

2 2

Angy = O(1)m3 )2 Yaps,

The gaugino masses are suppressed in relation to the other soft-terms
my , == O(100 GeV)

This happens as the leading contribution to the gravitino mass is the
F-term of the hidden sector meson field, to which the gaugino mass is
insensitve.
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K admits a non-trivial fundamental group, m1(K): non-trivial
quantities, Wilson lines, (A GUT connection)

W:Pexpj{Ayél

o Convenient representation for W:

m
1 2
W:Zﬁ ITWZEUQJ' )
m j

with Q; generators of the surviving U(1) factors, a; s.t. W" = 1.

@ W cannot be gauged away, but can be absorbed on a chiral
supermultiplets = GUT is broken.

@ )V are holonomies: have a topological meaning and furnishes a
representation of m1(K): If mi(K) = Z, = W" = 1.

@ All possible W commute between them =- each W is a diagonal
element of the GUT group and the breaking pattern is rank preserving.

e Witten: if K admits a geometrical (freely acting) symmetry
isomorphic to m1(K) = W act as charges of the symmetry.
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