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Introduction

• Strings unify gravity and gauge interactions at the quantum level.

• Particle physics : Start with classical 4D Minkowski space +
implement perturbation theory to derive quantum dynamics.

• But from gravity point of view : Cosmological constant generated by
quantum loops.

Except if susy : perturbative Λ = 0

If not susy at all : Λ = O(M4
s )

• Intermediate situation : No-scale models
[Cremmer, Ferrara,
Kounnas, Nanopoulos]

At tree level : Minkowski space + susy spontaneously broken

Potential Vtree ≥ 0 and admits m3/2 as a modulus : flat direction
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• Magnitude of the 1-loop effective potential V1-loop is dictated by m3/2.
For small m3/2, does V1-loop admit a small expectation value?

• Generically, NO : runaway behavior of m3/2, other moduli
destabilized, magnitude of V1-loop still too large,...

• To find a loophole, we consider a context where all computations can
be done explicitly, in perturbation theory :

Heterotic string

Coordinate Dependent Compactification
= “stringy Scherk-Schwarz mechanism”, to break spontaneously
susy and gauge symmetry :

m3/2 =
Ms

R

where R is the characteristic size of the compact
space involved in the susy breaking

• Taking R large, to have m3/2 and hopefully |V1-loop| small,

=⇒ Light towers of KK modes : They dominate in V1-loop .
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• Choose a point in classical moduli space 〈GIJ〉, 〈BIJ〉, 〈Wilson
lines〉,...

• Suppose there are no scales between 0 and m3/2.

——— cMs : large Higgs, GUT or string scale

——— m3/2 : towers of KK modes of mass ∝ m3/2

——— 0 : nB massless bosons and nF massless fermions

V1-loop = ξ(nF − nB)m4
3/2 +O(e−cMs/m3/2) , ξ > 0
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• General case : Some scales may be lower than m3/2.

• Switch on small deviations collectively denoted Y , to 〈GIJ〉, 〈BIJ〉,
〈Wilson lines〉 :

——— cMs : large Higgs, GUT or string scale

——— m3/2 : towers of KK modes of mass ∝ m3/2

——— YMs : some of the nB + nF states get a mass YMs

——— 0

• nB(Y ) and nF (Y ) interpolate between different integer
values, reached at distinct points in moduli space.

=⇒ Expand in Y
6 / 27



• For N = 4→ N = 0

V1-loop = ξ(nF − nB)m4
3/2−b ξ̃ m

2
3/2(YMs)

2 + · · ·+O(e−cMs/m3/2)

The Y ’s are Wilson lines of the non-Abelian gauge groups.

The b’s are their β-function coefficients. ξ̃ > 0.

• Dominant term :

nF < nB

m3/2

V1-loop

nF > nB

m3/2

V1-loop

∼10TeV

〈m3/2〉4 � Λobs
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V1-loop = ξ(nF − nB)m4
3/2−b ξ̃ m

2
3/2(YMs)

2 + · · ·+O(e−cMs/m3/2)

=⇒ define “Super No-Scale Models” in string theory by :

nF = nB [Kounnas, H.P.] [Abel, Dienes, Mavroudi]

=⇒ Standard Model needs hidden sector

• Subdominant term :

b < 0 =⇒ Y stabilized at 0

b > 0 =⇒ Instability [Kounnas, H.P.]

• If there is no non-assymptotically free gauge group factor,

V1-loop = O(e−cMs/m3/2)

The Stable Super No-Scale Models extend the notion of
no-scale models to the 1-loop level :

V1-loop ≥ 0 and m3/2 is a flat direction.
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• Note that in Type II and orientifold theories, there exist non-susy
models with

V1-loop = 0 i.e. NF = NB are any mass level !

[Kachru, Kumar, Silverstein] [Harvey]

[Shiu, Tye] [Blumenhagen, Gorlich]

[Angelantonj, Antoniadis, Forger]

[Satoh, Sugawara, Wada]

When obtained via spontaneous breaking of susy, they are super
no-scale models in a “strong sense”.

• However

V2-loops has no reason to vanish. [Aoki, D’Hoker, Phong]

When a perturbative heterotic dual is known, it is a conventional
super no-scale models : nF = nB.

[Harvey] [Angelantonj, Antoniadis, Forger]
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Example of N = 4→ 0 super no-scale model

• Start from N = 4, E8 × E8 heterotic string on T 2 × T 2 × T 2 :

Z =
1

τ2η2η̄2

Γ(1)

η2η̄2

Γ(2)

η2η̄2

Γ(3)

η2η̄2
(V8 − S8) (Ō16 + S̄16) (Ō16 + S̄16)

where the left-moving worldsheet fermions contribute

V8 − S8 =
∑
a,b

(−1)a+b+ab θ
[
a
b

]4
η4

and the lattice is modular invariant

Γ(1) =
∑

m1,m2

n1, n2

q
1
2
|pL|2 q̄

1
2
|pR|2 =

√
detG

τ2

∑
m̃1, m̃2

n1, n2

e
− π
τ2

(m̃i+niτ)(G+B)ij(m̃j+nj τ̄)

• To break susy, couple lattice to the spin structure via a modular
invariant sign, e.g.

(−1)m̃1a+n1b+m̃1n1
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=⇒


(−1)bn1 : odd n1 reverse GSO

m1 +
a+ n1

2
: shifts the KK masses

• When the first T 2 is large, all massless states have n1 = 0.
=⇒The massless fermions (a = 1) get a KK mass =⇒ nF = 0.
Cannot be super no-scale.

• We need to keep some fermions massless :

Ō16 + S̄16 =
1

2

∑
γ,δ

θ̄
[γ
δ

]8
η̄8

, where γ = 0⇔ Ō16 and γ = 1⇔ S̄16.

• Insert
(−1)m̃1(a+γ+γ′)+n1(b+δ+δ′)+m̃1n1

=⇒


When γ + γ′ = 0 or 2, nothing changes.

When γ + γ′ = 1, roles of Bosons and Fermions reversed.
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Z =
1

τ2η2η̄2

Γ(2)

η2η̄2

Γ(3)

η2η̄2

1

η2η̄2
×

[
Γ(1)
[
e
e

](
V8(Ō16Ō16 + S̄16S̄16)− S8(Ō16S̄16 + S̄16Ō16)

)
+ Γ(1)

[
e
o

](
V8(Ō16S̄16 + S̄16Ō16)− S8(Ō16Ō16 + S̄16S̄16)

)
+ Γ(1)

[
o
e

](
O8(V̄16C̄16 + C̄16V̄16)− C8(V̄16V̄16 + C̄16C̄16)

)
+ Γ(1)

[
o
o

](
O8(V̄16V̄16 + C̄16C̄16)− C8(V̄16C̄16 + C̄16V̄16)

) ]
where Γ(1)

[
parity of winding
parity of momentum 2m1 + a

]
• m2

3/2 =
|U1|2M2

s

ImT1 ImU1

where T1, U1 are the Kähler and
complex structure of the first T 2.
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• When ImT1 is large, the gauge group is

U(1)2 ×G(2) ×G(3) × SO(16)× SO(16)

• The massless spectrum satisfies

nB = 8
(

244 + dimG(2) + dimG(3)
)
, nF = 8× 256 .

12 missing bosons are obtained when T2, U2 and T3, U3 at the enhanced
symmetry points

G(2) ×G(3) = SU(2)4 or G(2) ×G(3) = SU(3)× SU(2)× U(1)

• At these points, the model develops a super no-scale structure.
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Properties of the model

m2
3/2 =

|U1|2M2
s

ImT1 ImU1

• When ImT1 > 1, ImU1 ∼ 1

m3/2 < Ms , V1-loop = O(e−cMs/m3/2) : super no-scale regime

• When ImT1 decreases up to ∼ 1

m3/2 ∼Ms , V1-loop is not small.

Do we have an Hagedorn-like divergence of V1-loop ?

In (−1)m1a breaking, YES : O8Ō16Ō16 =⇒ Tachyons

In (−1)m1(a+γ+γ′) breaking, NO: O8V̄16V̄16 =⇒ Non-level matched
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• For ReT1 = 0 and

U1 = T2 = U2 = T3 = U3 = i :

1 2 3 4

0.5

1.0

1.5

ImT1

m3/2

V1-loop

M4
s

• When ImT1 → 0, the first T 2 shrinks,
which is equivalent to a dual theory in 6D, explicitly non susy.

So, when m3/2 > Ms, the model is better interpreted as a
compactification of this non-susy theory down to 4 dimensions.

• The model is self-dual under

(T1, U1) −→
(
− 1

U1
,− 1

T1

)
So, evolving T1 from 0 (non susy) to i∞(super no-scale)
⇐⇒ evolving U1 from i∞ (super no-scale) to 0 (non susy).
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Moduli deformations

• The classical moduli space of the model is

SO(6, 6 + 16)

SO(6)× SO(6 + 16)

We consider the model at point where T 2 × T 2 × T 2, where the first
torus is large and the last two are at an enhanced symmetry point
where the model is super no-scale, e.g.

U(1)2 × SU(2)4 × SO(16)2

We switch on an arbitrary marginal deformation of the classical theory
around this point and compute V1-loop to study the local stability :
Is the super no-scale point a minimum, maximum or saddle ?

• Compute V1-loop = − M4
s

(2π)4

∫
F

d2τ

2τ2
2

Z

Since T 2 is large, the winding states are super heavy =⇒ O(e−ImT1).
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We keep in Z all states s0 with 0-winding and 0-momenta along the
first T 2 and take into account their towers of KK modes

(−1)F0
1

τ2

∑
m1,m2

(−1)m1 e
−πτ2 |U1m1−m2+ξ|2

ImT1ImU1 q
1
4
M2

0L q̄
1
4
M2

0R

(−1)F0
ImT1

τ2
2

∑
m̃1,m̃2

e
− πImT1
τ2ImU1

|m̃1+ 1
2

+U1m̃2|2 e
2iπ

Im[(m̃1+ 1
2 +U1m̃2)ξ̄]

ImU1 q
1
4
M2

0L q̄
1
4
M2

0R

=⇒
∫
F
d2τ ( · · · ) =

∫ 1/2

−1/2
dτ1

∫ +∞

0
dτ2 ( · · · ) +O(e−

√
ImT1)

=⇒ Only the level matched states contribute

Finally, q
1
4
M2

0L q̄
1
4
M2

0R = e−2πτ2(NL− 1
2

+··· ) with τ2 > ImT1

=⇒ Lowest number NL = 1
2 dominates.

The oscillators states give O(e−
√

ImT1) contributions.
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• For small moduli deformations : Keep only the KK towers
above the initially massless states s0

V1-loop =− M4
s

(2π)4

nB+nF∑
s0=1

(−1)F0

∫ +∞

0

dτ2

2τ3
2

∑
m1,m2

(−1)m1 e−πτ2M
2
L +O(e−c

√
ImT1 )

where ML is the mass of each KK mode, deformed by the worldsheet
operators

yiI∂Xi∂̄X
I , i, I = 1, . . . , 6 and yiI∂Xi∂̄φ

I , I = 7, . . . , 22 :

M2
L = 2

(
|p(1)
L |

2 +

6∑
i=3

(piL)2

)

2|p(1)
L |

2 =
|U1m1 −m2 +

∑22
I=3 (i ImU1 y

1
I − y2

I )Q
I |2

ImT1 ImU1

2(piL)2 =

(
mi + Re [(iyi1 − yi2)Q̄(1)

]
+
∑22

I=36=i y
i
IQ

I

Ri
+ niRi

)2
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• The Q’s are the charges of the KK modes, with respect to
U(1)2 × SU(2)4 × SO(16)2.

They can be neutral or in the Adjoint of one of the SU(2)’s,
or Adjoint or Spinorial of one of the SO(16)’s.

where E(1,0)(U |s, k) =
∑
m̃1,m̃2

(ImU)s(
m̃1 + 1

2 + m̃2U
)s+k (

m̃1 + 1
2 + m̃2Ū

)s−k
ρs =

E(1,0)(U1|s, 1)

E(1,0)(U1|s, 0)
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• 1st line ∝ m4
3/2

It is not there in the super no-scale models but is there in the
generic no-scale models.

The Y j ’s are moduli that break the T 2 × T 4 factorization and also
deform the definition of m3/2.

Their mass is ∝
m2

3/2

Ms
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• 2nd and 3rd lines ∝ m2
3/2M

2
s

The Y ’s are the Wilson lines of the four SU(2)’s and of the two
SO(16) along T 6.

Their masses are ∝ m3/2

bSU(2) = −8
3 × 2 < 0 =⇒ Moduli stabilized at the origin.

bSO(16) = +8
3 × 2 > 0 =⇒ Tachyonic : They condense.

Go to new vacuum where the SO(16)’s are broken to
subgroups with b ≤ 0.
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Stabilization

• The super no-scale models can be considered in a cosmological
scenario.

• They are all stable at early times, if finite temperature effects
are taken into account.

• At finite T ,

V1-loop −→ free energy

(mass)2 −→ T 2 + (mass)2

• As the Universe expands, T decreases :

As long as T > m3/2 : No tachyons =⇒ the models are stable.

When T crosses m3/2 : Higgs phase transition take place.
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N = 2→ 0 and N = 1→ 0 super no-scale models

• Consider T 2 × T 4

Z2
or

T 2 × T 2 × T 2

Z2 × Z2
and implement the stringy

Scherk-Schwarz mecanism along the first T 2.

In general, the untwisted sector and twisted sectors contribute to
nF − nB, except is one Z2 is freely acting (no fixed point) :

V1-loop =
1

2
VN=4→0

1-loop or
1

4
VN=4→0

1-loop

• Without free Z2, there are large ImT1 corrections of the KK modes to

16π2

g2
YM(µ)

= k
16π2

g2
string

+ b log
M2
s

µ2
+ b

(π
3

ImT1 − log ImT1 +O(1)
)

When b < 0, a fine tuning of gstring is a priori required to cancel it.

With one free Z2, we have an underlying N = 4→ N = 2

=⇒ No ImT1 term : No “Decompactification Problem”
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Conclusion

• The Super No-Scale Models are those which preserve the flatness
of the effective potential at 1-loop (up to O(e−cMs/m3/2)).

=⇒ Bosons - Fermions degeneracy at the massless level.

• Their quantum stability is guaranteed if :

There are no Non-Asymptotically Free gauge groups (b > 0), in
the N = 4→ 0 case.

Or simply if finite T is greater than m3/2.

• When such a model is stable, it makes sense to decouple gravity to
obtain MSSM-like models in flat space and let the electroweak radiative
breaking stabilize m3/2. [Alvarez-Gaume, Polchinski, Wise] [Ibanez, Ross]

[Ellis, Nanopoulos, Tamvakis]
[Kounnas, Lahanas, Nanopoulos, Quiros]

[Kounnas, Zwirner, Pavel]

• Question : Is the effective potential at genus g ≥ 2 still flat ? Or do
we have to impose more constraints to guaranty the flatness condition ?
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